
PTC.comPage 1 of 8 | Managing Product Variants in a Software Product Line

White Paper

Software Product Line (SPL) engineering has become indispensable
to many product engineering organizations. It enables those organiza-
tions to effectively manage the many product features and platform
variations needed to remain competitive without stifling innovation or
being affected by dramatically increasing costs of compliance.

At the same time, many product development orga-
nizations today are burdened with a wide array of
disparate application lifecycle management (ALM)
tools acquired over time and incrementally bundled
together to automate the myriad of high-ceremony
development processes. The resulting environment
is one fraught with redundancy, inefficiency, error,
escalating costs, compliance issues and lack of
visibility into product release readiness.

In addition to the existing challenges, these organi-
zations often find significant new challenges when
implementing an SPL engineering practice in such an
environment. Their legacy processes and tooling are
immediately driven far beyond their original intent,
stalling any SPL process implementation indefinitely.

This paper presents key aspects of successful lifecycle
management processes and associated automation
platforms that are critical to success when implementing
SPL engineering practices. This paper also examines
some proven patterns for management of product
variants – a key aspect of SPL engineering – with PTC
Integrity, a global software development product.

Managing Product Variants in a Software
Product Line with PTC Integrity

What Defines a “Good” Software Development
Process?

 A good software development process is lean. Every
activity is purposeful and directly or indirectly contrib-
utes to tangible end results; that is, no process activity
would be performed “just because the process says so.”
Hence, a particular process artifact should only be
produced if it is used to help deliver the working software,
maintain the software or help meet compliance.

For example, in a “high-ceremony” process, no change
request can be implemented without creating a change
package and no changes can be made to any lifecycle
artifact without a corresponding change request.

In contrast, a less formal development process may not
require a change package for certain types of change
requests, and might allow certain artifact changes
without an associated change request as long as a
change package is created to track the changes.

PTC.comPage 2 of 8 | Managing Product Variants in a Software Product Line

White Paper

Furthermore, a good process should lend itself to life-
cycle automation. For example, meeting compliance
regulations should be a natural byproduct of the auto-
mated development process, whereby artifacts for a
compliance submission can be produced on-demand in
an automated way – significantly reducing the time and
effort needed to prepare for an audit.

While there are other important facets of a successful
SPL engineering process, these two are fundamental
regardless of the specific SPL method used.

Traditional ALM Solutions vs. ALM Optimized for
Software-Intensive Product Development

For years, engineering organizations that develop soft-
ware-intensive products have been forced to contend
with one industry focused on automating traditional IT
focused ALM and another, largely separate, industry
focused on automating product lifecycle management
(PLM). This situation has left a void for software devel-
opment teams responsible for delivering ever-more
complex software components that are embedded in
engineered products. As the complexity and volume
of software in engineered products have grown expo-
nentially over the past few decades, the capabilities of
traditional ALM tools to address the unique needs of
software engineers working within a larger product
engineering organization have fallen far behind. At the
same time, leading PLM products have incrementally
added capabilities to help manage software develop-
ment activities and artifacts, but they have typically
been significantly limited in scope and sophistication.

In particular, traditional ALM tools are unable to
accommodate of the larger PLM process and automa-
tion platforms in which they must operate. Integration
of a set of disparate ALM tools – which are themselves
poorly integrated with one other – into a larger engi-
neering automation ecosystem has been a daunting
task largely left to the customer to plan, implement,
and maintain. While PLM and traditional ALM vendors

offer varying approaches to integrating the software
engineering tool set into the system and hardware
engineering environment, most attempts focus on
aggregating huge numbers of software engineering
artifacts into single line items in the product bill
of materials (BOM) managed by the PLM tool. This
approach, unfortunately, fails to recognize and manage
the enormous complexity and ever-increasing number
of software components in modern software-intensive
products. A more effective approach is urgently needed
to integrate software, hardware and system engineering
artifacts and processes so as to meet the changing needs
of today’s engineering organizations.

PTC is addressing that need with PTC Integrity, a single
product built from the ground up for global software
development for engineered products. PTC Integrity
was also built from the start for seamless integration
into the larger PLM environment in a way that provides
the required granular visibility and control of artifacts
and processes between system, hardware, and
software engineering.

Single Platform vs. ToolBox

PTC Integrity is the industry’s only Global Software
Development solution that offers out-of-the box capa-
bilities to directly address customer challenges in
product engineering. Many competing vendors offer
toolboxes1 containing collections of disparate tools to
provide coverage of the development lifecycle. These
tools have typically been acquired from multiple
sources over time, with a few having been developed
in-house. Thus, the individual tools tend to depend on
widely varying implementation technologies and
architectural paradigms, and have different user-
experience models. The tools typically cover the
lifecycle with gaps and overlaps in their collective
capabilities. This toolbox approach does not allow the
creation of effective lifecycle automation solutions
without the organization investing in additional staff-
months to bundle, customize and configure those tools
to meet the organization’s needs.

1 The toolbox often contains disparate tools developed
by different vendors with varying point-to-point integrations.
Regardless of how well-integrated these disparate tools are, the
client must still invest significantly to create desired solutions
from the toolbox.

PTC.comPage 3 of 8 | Managing Product Variants in a Software Product Line

White Paper

With PTC Integrity, customers can begin realizing a
return on their investment immediately, growing into a
comprehensive solution that meets the organization’s
needs in an incremental fashion. PTC Integrity also
allows the organization to maintain tight connections
with existing practitioner and workgroup ALM tools,
providing a single source of truth that gives the orga-
nization real-time visibility into product release readi-
ness – as well as an incremental path to deployment
that does not require a disruptive “rip-and-replace”
implementation.

Effective Management of Product Variants

To show how PTC Integrity – as a single product –
automates global software development processes,
this paper will consider the problem of managing
product variants, a key aspect of an SPL engineering
practice. Product variants, whether differing by function
or parameter values that drive functional behavior,
have a significant amount of commonality that must
be leveraged to lessen complexity across variants.
Without effectively exploiting that commonality, dupli-
cation will lead to exponential growth in the number of
artifacts that need to be managed for each variant –
thereby multiplying the resources and drastically
increasing the cost to develop and maintain each variant.
This duplication approach, sometimes described
as “clone-and-own,” also leads to loss of traceability
and other relationships between “cloned” artifacts
across the variants. Once cloned, artifacts being
reused among multiple variants take on a life of their
own, leaving teams to develop and maintain each
variant as they would a stand-alone product.

To be successful in SPL engineering, the commonality
among product variants must be maintained and
propagated in a controlled manner across conforming
product families. PTC Integrity excels at enabling orga-
nizations to “tame” the complexity of managing holistic,
shared artifact sets, or assets, to create deliverable
product variants. At the core of PTC Integrity is the
notion of a release of related functionality and man-
agement of both variant and core artifacts, as well as
planned propagation and impact analysis. PTC Integrity

provides support for both functional variation as well
as data-driven software variation, the latter being
highly desirable – particularly in control-oriented
systems – to establish a common code base, with the
majority of the variance in functional behavior param-
eterized based on input data values.

Managing Shared Assets for Product Variants
with PTC Integrity

While managing the development of product variants
requires supporting shared assets across the lifecycle
(e.g., requirements, designs, models, code and test),
this paper will illustrate the capabilities of PTC Integrity
in this respect by focusing on how it tackles the problem
of managing the requirements for product variants.

Requirements of Functional Variants2

A functional product variant is one that shares myriad
common requirements with other variants of the same
product, but also adds requirements that are specific
to its own structure and behavior.

First, a set of base requirements are written that will
be common to the functional variants of the product.3
The set of requirements for each functional variant
will then comprise some or all of the common-base
requirements, plus a set of requirements that are
specific to that variant.

The following scenarios show how this approach pro-
vides maximum efficiency and accuracy in creating,
maintaining and certifying functional variants.4

2 Please note that what follows is only one set of specific
scenarios for using PTC Integrity to manage functional and
parameter-driven variant requirements. Such scenarios can be
varied to more closely meet user needs.
3 For simplicity, the creation of the common base require-
ments is presented here as preceding the creation of any product
variant requirements. More realistically, however, the require-
ments for the common base may emerge over time after creating
the requirements for two or more variants. In any event, the main
characteristics of the scenarios presented here would not change.
4 The scenarios in this paper do not address more com-
plex situations such as multiple layers of commonality. These
more complex scenarios can also benefit from a common base,
al eit in a more involved manner.

PTC.comPage 4 of 8 | Managing Product Variants in a Software Product Line

White Paper

New Variant

•	 Create a blank new document for the new variant –
call this the “parent” document. See Figure 1;

•	 Enter two sets of requirements in this document.
For the first set, point to all, or a subset, of the
common set of requirements. This set cannot be
edited in the parent document, which was created
in the previous step;

•	 For the second set of requirements in the parent
document, enter the requirements that are specific
to only that variant; and

•	 The ability to have each product variant point to the
same physical common base enables avoidance
of “clone-and-own” and maintains the key relation-
ships between the common shared requirements
across multiple variants.

Certification/Recertification

•	 Once the common base is certified, it need not be
recertified every time a new variant points to it;

•	 Only the requirements unique to the variant (i.e.,
those contained in the parent document mentioned
in the “New Variant” scenario above) need to be
certified;

•	 When changes are made to the common base (see the
“Change Request” scenario below), recertification will

need to be performed for all product variants pointing
to the changed requirements in the common base.
However, the effort needed to determine which
variants are affected and how – as well as which
downstream shared development assets may also
need to be recertified for each variant – is straight-
forward and precise, since PTC Integrity maintains
the appropriate relationships between shared assets
across the product line;

•	 Ultimately, the time/cost of producing a compliance
submission is dramatically reduced.

Figure 1: Several functional product variants leveraging common
base requirements. In this example, Variant 1 includes its own
specific requirements, plus all the requirements in the common
base, whereas each of Variants 2 and 3 includes its respective
specific requirements plus only a subset of the common base.

PTC.comPage 5 of 8 | Managing Product Variants in a Software Product Line

White Paper

Change Request

•	 Significant savings in cost, time and quality are
realized if the change request targets something in
the common requirements;

•	 The change is made only once in the common base
and saved in a new version;

•	 Future variants can point to this new version (see
Figure 2 below), but current variants will not auto-
matically change to point to the new version until it
is determined that a given variant should inherit the
change. This preserves the certification that was
conducted for each of the current variants (i.e.,
original common base certified once + variant-
specific requirements certified per variant).

Requirements of Parameter-Driven Variants5

A parameter-driven product variant represents a
common template of parameterized requirements,
assigning its specific values to some or all of the
parameters in the common template. This common
base template contains parameters whose values can
be changed per product variant. Such parameterized
requirements can be highly desirable in control-
oriented systems to establish a common code base
that is parameterized based on input data values.

5 In the example scenarios shown here, although func-
tional variants are treated separately from parameter-driven
variants, the two types of variants can be combined in any given
development environment.

Figure 2: When a new version of the common base is produced, new variants may point to its requirements, but existing variants can keep
pointing to the original version of the common base to preserve their certification until it is determined that a given variant is ready to
inherit the change. As an architectural point, requirements that don’t change in the new common base are just pointers to the same
requirements in the original common base.

PTC.comPage 6 of 8 | Managing Product Variants in a Software Product Line

White Paper

For example, a requirement in the common base may
be “The maximum allowable temperature shall be
{{TempMax}} degrees”. (See Figure 3 below.) The
variable {{TempMax}} can be set to different values
per product variant. PTC Integrity allows each pro-
duct variant to point to the same physical common base
while modifying as many parameters as necessary for
the product variant.

The following scenarios show how this approach pro-
vides maximum efficiency and accuracy in creating,
maintaining and certifying parameter-driven variants.6

New Variant

•	 Create a blank new document for the new variant –
call this the “parent” document;

•	 Point that document to the common set of require-
ments, which contains a base set of already certified
parameter values;

6 The scenarios in this paper do not address more com-
plex situations such as multiple layers of commonality. These
more complex scenarios can also benefit from a common base,
albeit in a more involved manner.

•	 Substitute only the parameters that need to change
for the new variant in the common base set. You’ll
immediately see the result of the new substitutions
in the context of common requirements immediately.
Such immediate, visual feedback allows the user
to ensure accuracy in the requirements – thereby
achieving requirement correctness by “construction”
rather than just by “inspection” in later stages of
development, when it becomes more expensive to fix
requirement errors;

•	 Being able to have each product variant point to
the same common base precludes the occurrence
of “clone-and-own,” which would have resulted in
a new physical copy of the set of common require-
ments for each variant.

Figure 3: Several parameter-driven variants can represent the same physical parameterized common base

PTC.comPage 7 of 8 | Managing Product Variants in a Software Product Line

White Paper

Certification/Recertification

•	 Once the common base is certified, it need not be
recertified every time a new variant points to it;

•	 Only the newly represented values that are unique
to the variant need to be certified;

•	 When changes are made to the common base (see
the “Change Request” scenario below), recertification
 will need to be performed for all product variants
pointing to the changed requirements in the common
base. However, the effort needed to determine which
variants are affected and how – as well as which
downstream shared development assets may also
need to be recertified for each variant – is straight-
forward and precise, since PTC Integrity maintains
the appropriate relationships between shared
assets across the product line;

•	 Ultimately, the time/cost of producing a compliance
submission is dramatically reduced.

Change Request

•	 Significant savings in cost, time and quality occur
if the change request targets something in the com-
mon requirements;

•	 The change is made only once in the common base
and saved in a new version;

•	 Future variants can point to this new version (See
Figure 2 on page 5), but current variants will not
automatically change to point to the new version
until it is determined that a given variant should
inherit the change. This preserves the certification
that was conducted for each of the current variants
(i.e.,original common base certified once + variant-
specific requirements certified per variant).

PTC.comPage 8 of 8 | Managing Product Variants in a Software Product Line

White Paper

Conclusion

PTC Integrity allows organizations implementing SPL
engineering practices to manage the complexities of
product variants effectively and efficiently. PTC Integrity
maintains a single physical copy of the common shared
assets across a software product line. As such, PTC
Integrity handles common requirements and other
lifecycle assets much more efficiently than a traditional
approach, which can dramatically increase the number
of requirements – inviting error-prone duplication and
dramatically increased cost. PTC Integrity also main-
tains the traceability relationships between common,
shared assets and variant-specific assets, providing
 teams a clear understanding of the relationships
between specific variants and the shared core assets.
The advanced variant management capabilities of PTC
Integrity enable organizations to effectively implement
SPL engineering without losing control of shared and
variant-specific assets across the lifecycle.

PTC Integrity Business Unit Locations

North America
1 800 613 7535

United Kingdom
+44 (0) 1252 453 400

Germany
+49 (0) 711 3517 750

Asia Pacific
+65 6830 8338

Japan
+81 3 5422 9503

For more information visit: PTC.com/product/integrity.

© 2012, PTC. All rights reserved. Information described herein is furnished for infor-
mational use only, is subject to change without notice, and should not be construed as a
guarantee, commitment, condition or offer by PTC. PTC, the PTC Logo, PTC Creo, PTC
Elements/Pro, PTC Mathcad, PTC Windchill, PTC Windchill PDMLink, Pro/ENGINEER,
and all PTC product names and logos are trademarks or registered trademarks of PTC
and/or its subsidiaries in the United States and in other countries. All other product
or company names are property of their respective owners. The timing of any product
release, including any features or functionality, is subject to change at PTC’s discretion.

7511–ManagingProductVariants-WP–EN–0912

http://www.ptc.com/product/integrity

